

Determining the Cost-Quality Trade-Off
for Automated Software Traceability

Alexander Egyed

Teknowledge Corporation
4640 Admiralty Way

Marina Del Rey, CA, USA

aegyed@ieee.org

Stefan Biffl Matthias Heindl
Software Tech. & Interactive Systems

Vienna University of Technology
A-1040 Vienna, Austria

{biffl, heindl}@ifs.tuwien.ac.at

Paul Grünbacher
Sys. Engineering and Automation

Johannes Kepler University
4040 Linz, Austria

paul.gruenbacher@jku.at

ABSTRACT
Major software development standards mandate the establishment
of trace links among software artifacts such as requirements, ar-
chitectural elements, or source code without explicitly stating the
required level of detail of these links. However, the level of detail
vastly affects the cost and quality of trace link generation and
important applications of trace analysis such as conflict analysis,
consistency checking, or change impact analysis. In this paper, we
explore these cost-quality trade-offs with three case study systems
from different contexts – the open-source ArgoUML modeling
tool, an industrial route-planning system, and a movie player. We
report the cost-quality trade-off of automated trace generation
with the Trace Analyzer approach and discuss its expected impact
onto several applications that consume its trace information. In
the study we explore simple techniques to predict and manipulate
the cost-benefit trade-off with threshold-based filtering. We found
that (a) 80% of the benefit comes from only 20% of the cost and
(b) weak trace links are predominantly false trace links and can be
efficiently eliminated through thresholds.

Categories and Subject Descriptors
D.2.1 [Requirements/Specification] and D.2.8 [Metrics].

General Terms

Management, Documentation, Design, Economics, Experiment.

Keywords
Experience report, Value-Based Software Engineering, Auto-
mated Trace Analysis, Cost-Quality Trade-Off.

1. INTRODUCTION
Approaches for establishing traceability between software arti-
facts such as user needs, requirements, architectural elements, or
code play an important role in both software engineering research
and practice. The topic has been researched for more than a dec-

ade [9]. Furthermore, numerous major software engineering stan-
dards such as the CMMI or ISO 15504 consider software trace-
ability as a ‘best practice’ and mandate or strongly suggest the use
of traceability techniques. In many branches of industry these
standards are imposed on subcontractors. For example, several
European car makers are demanding the fulfillment of a subset of
ISO 15504 from all their subcontractors, who suddenly face the
challenge of quickly and efficiently introducing traceability tech-
niques within their organization.

Trace links support software engineers and quality assurance per-
sonnel during software development by helping them understand
the many relationships among software artifacts. This is most
worthwhile for large, complex, and long-living systems where
there are many non-obvious relationships among artifacts. Trace
analysis reveals relationships among a broader set of software
artifacts such as user needs, requirements, architectural elements,
or source code. For example, trace analysis can reveal which ele-
ments of a state chart or class diagram realize a requirement, or
how the elements inside a state chart diagram relate to a class
diagram, given that every state transition describes a distinct be-
havior and every class implements that behavior in form of a
structure. While it might be easy to guess some of these trace
dependencies, the semi-formal nature of many modeling lan-
guages (e.g., UML) and the informal nature of the requirements
often make it hard to identify trace links completely.

Software traceability deals with (a) trace link generation, i.e., the
manual and/or automated identification of trace links; and
(b) trace link consumption, i.e., the use of trace links for conflict
analysis [6], consistency checking, and change impact analysis.
The benefit of these applications largely depends on the quality of
the trace links provided by trace generation. For the trace analysis
to be useful, one also must understand for which particular engi-
neering tasks it is done and how incorrect trace links might affect
the outcome. The ultimate goal is to tailor the trace analysis to
produce the desired quality of trace links with the least amount of
input effort.

Higher-quality trace links (i.e., fewer false positives/negatives)
allow the users getting their tasks done faster and better. For ex-
ample, higher-quality traces result in fewer false conflicts re-
ported during requirements engineering, or a more precise defini-
tion of the impact of a change request during system evolution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011…$5.00.

While high-quality trace links are a desirable goal, they are typi-
cally not economical to produce as identifying and validating
trace links can be a big burden in a typical project context [11].
There are tools available that provide the infrastructure for man-
aging trace links (e.g., case tools, requirements management
tools). However, these tools do not free the engineers from identi-
fying links and from ensuring their validity over time. Despite its
benefits traceability is therefore hardly adopted in industry,
mainly due to these cost and complexity issues [10].

To overcome these problems, researchers have been developing
different automated or semi-automated approaches for trace gen-
eration [5]: For example, Antoniol et al. [1] discuss a technique
for automatically recovering traceability links between object-
oriented design models and code based on determining the simi-
larity of paired elements from design and code. Spanoudakis et
al. [13] have contributed a rule-based approach for automatically
generating and maintaining traceability relations. A forward engi-
neering approach is taken by Richardson and Green [12] in the
area of program synthesis. Traceability relations are automatically
derived between parts of a specification and parts of the synthe-
sized program. These and other approaches bring some relief, but
they strongly rely on the quality of the input of trace link genera-
tion: mainly, the level of detail, e.g., classes or methods as points
of reference, and the level of incorrect or missing trace links.
In this paper we focus on trace generation, which deals with
(1) identification of trace link candidates; and (2) validation of
trace link candidates. The choice of techniques used for trace
generation influences the amount and quality of traces, i.e., the
number of correct trace links; incorrect trace links (“false posi-
tives”); and unreported relationships among artifacts (“false nega-
tives”). The validation step aims at reducing the number of incor-
rect trace candidates. The aim is to achieve a level of quality that
is sufficient for the applications consuming trace links. Of course,
the desired level of quality varies with the project context and
applications.

2. QUALITY CONSIDERATIONS IN
TRACE ANALYSIS

Trace Analyzer [4] supports generating trace link candidates
based on a small “seed set” of trace links that can come from a
human expert or from logs of test cases that link requirements
(and other artifacts) to source code pieces. The engineer then
chooses the desired level of detail for tracing source code: pack-
ages, classes, methods, or lines of code. The Trace Analyzer sim-
plifies the finding of trace link candidates among any kind of
software artifacts (e.g., requirements, design model elements, and
code). It requires as input some initial input how software artifacts
relate to some common representation of the system, usually the
source code. This relationship is typically explored through test-
ing, where engineers are expected to supply a set of test scenarios
that match the software artifacts. During testing engineers log the
lines of code, methods, or classes that are executed by these test
scenarios. Since it must be known how test scenarios match soft-
ware artifacts, one can infer the software-artifact-to-code map-
ping.

The existence of a trace link candidate between any two software
artifacts is determined by their code overlaps. If two software
artifacts do not share any code part (e.g., lines of code, methods,
or classes) during execution (i.e., they execute in distinct parts of

the system) then no trace link is assumed among them. Note that a
trace link is not a data/control dependency, but simply describes
some correlation between two software artifacts. If two artifacts
do share code, then there may be a trace link, if the shared code is
application-specific.

Trace link candidates are thus computed by the Trace Analyzer
based on the degrees of code overlap among software artifacts.
Testing is a validation form that can not guarantee completeness
(i.e., test cases may be missing). This naturally affects trace gen-
eration and the Trace Analyzer thus provides an input language
that lets the engineer express known uncertainties [5].

The Trace Analyzer leverages manual trace generation by adding
new trace candidates based on initially available trace candidates,
e.g., from test suites for a requirement that relate it to the “foot-
print” of executed code elements. In this paper we focus on the
aspect of incorrect trace candidates (“false positives”) and missing
trace candidates (“false negatives”) as these can incur substan-
tially higher cost for trace candidate generation and validation.
While the trace analyzer tool greatly simplifies trace candidate
generation it is not fool proof and the input affects the validity
and value of the output. This profoundly influences the utility of
applications that consume trace links such as consistency check-
ing, change impact analysis, or trade-off analysis during later
development iterations or software maintenance. Moreover, a
dilemma is that the quality of trace analysis is not just a factor of
the correctness of the input. Even correct input may yield wrong
traces given that we have choices in the level of detail of how
trace analysis is done during development.

Class A

method 1
method 2

requirement 1 uses method 1 of A

requirement 2 uses method 2 of A

Granularity: Method Granularity: Classes

requirement 1uses class A:

requirement 2 uses class A

no overlap overlap
Figure 1. Code overlap example on method and class level

Take, for example, in Figure 1 two requirements that are realized
by the same class but by different methods. If we analyze traces
on the method-level, then the two requirements do not overlap
because they are executed in distinct methods. Yet, an analysis on
class level will report an overlap because both requirements relate
to the same class. The statement that both requirements execute
inside the same class is correct, yet, may cause incorrect traces
(i.e., false positives).

Standards such as the CMMI or ISO 15504 request the use of
traceability techniques and also specify useful types of trace links.
However, there are no explicit statements about the required level
of detail of these links. A standard might be satisfied if software
artifacts are mapped to classes instead of methods even though
this introduces a significant number of flaws during trace analy-
sis. Choosing the appropriate level of detail is a difficult problem:
Method-level analysis allows more detailed results than class-
level analysis; lines of code allow an even finer analysis. The
execution of a particular if-statement inside a method may well
point to the implications of a particular requirement. From the
sole perspective of trace quality, the analysis on the level of lines
of code is thus even more preferable.

While traceability on finer levels of detail promises a finer picture
of the relationships among software artifacts, this is achieved at
higher cost. A lower level of detail typically decreases trace qual-
ity because it results in a higher number of false positives (it is
hard, however, to accurately estimate to what extent). It is thus
vital for trace analysis to understand the cost-quality implication
of different levels of detail. How much quality do we sacrifice by
saving one-order of magnitude effort in input generation (which
can be translated to engineering hours)? Is the sacrifice of quality
acceptable?

3. COST-QUALITY TRADE-OFF
ANALYSIS IN THREE CASE STUDIES

In order to explore the cost-quality trade-offs just sketched, we
conducted three case studies to investigate the effects of different
levels of detail (i.e., method level, class level, and package level)
for trace link generation on trace analyzer output quality (i.e., the
level of false positives). The software systems we have chosen for
our study are three differently-sized applications: the open-source
ArgoUML modeling tool, a Siemens route-planning application,
and a movie player. ArgoUML is an open-source software design
tool supporting the Unified Modeling Language (UML). The
entire source code and documentation for ArgoUML are available
from http://www.argouml.org. The Siemens route-planning sys-
tem, described in more detail in [10], supports efficient public
transportation in rural areas with modern information technolo-
gies. The “Video on demand” package is essentially a movie
player that can search for movies, select, and play them (more
detailed information is available in [4]).

Table 1. Case study systems and main context parameters

System Development context

ArgoUML UML modelling tool;
open-source development

Siemens Route
Planning

Route-planning application for public
transportation; industrial team work

Video on demand Movie player application; single devel-
oper open-source development

Trade-off analysis of the level of detail vs. the level of quality. For
each case study system we analyzed the impact of generating
trace link candidates on the number of false positives. As baseline
we took the level of false positives from trace links on the method
level, the finest level of trace detail in our study. This analysis
compares how a reduction of the level of detail (e.g., from method
to class or from class to package) and the associated effort results
in a higher level of false positives. For example, the largest of the
three systems we evaluated, the ArgoUML system, has 49 pack-
ages, 645 classes, and 5,952 methods. Naturally, it is easier to
map software artifacts to 645 Java classes than to 5,952 Java
methods, and we can thus save at least one order of magnitude in
effort by using classes instead of methods to determine the soft-
ware-artifact-to-code mapping. We found that we can also save
another order of magnitude, if we use packages instead of classes.
Strength analysis of trace link candidates. For the validation step
after generating trace link candidates it is helpful to identify the
candidates that are most likely false positives. Thus, we measured
the “strength” of each trace link candidate. We expected to find a

positive correlation between the number of false positives and the
strength of trace link candidates.
The “strength” of a trace link candidate is defined as the ratio of
the number of code elements (e.g., methods) that implement a
requirement and the number of code elements that two require-
ments share as part of their implementation. For example, if re-
quirement X is implemented in 10 methods, requirement Y is im-
plemented in 5 methods, and 2 methods implement a part of X as
well as a part of Y. Then, the trace strength for X is 2/10 = 20%
and for Y 2/5 = 40%. Stronger trace links are less likely to be false
positives. Our analysis once more underlines the diminishing
return in investment with more detailed levels of input. Trace
analysis on method level is in our study contexts around 10 times
more expensive but produces almost no additional strong traces.
These results are confirmed with the route-planning system data
and the movie player. We found that during the validation of trace
link candidates it is most worthwhile to concentrate on low-
strength trace candidates. These trace candidates are harder to
decide automatically and need human judgment. High-strength
traces and traces with zero strength are very likely to be correct
and we found in our studies little extra value in validating them
manually.

4. VALIDATION SUPPORT:
THRESHOLDS TO FILTER ERROR-
PRONE TRACE CANDIDATES

The data analysis reported in Section 3 showed that tracing at
class level can save an order of magnitude of input effort while
introducing only 15-30% more false positives compared to tracing
at method level. So, regarding our case studies, one could argue
that the tracing quality at the class level is relatively close to trac-
ing at method level. Yet, Section 3 showed that most of the qual-
ity problems when tracing at class level came from low-strength
traces. This opens up an opportunity to investigate the option of
automated filtering support (strength thresholds) for the trace
candidate validation step to eliminate error-prone low-strength
traces – thus improving the overall quality of the trace analysis at
very little extra cost.

We experimented with three different kinds of filters, namely:

• Threshold: This filter eliminates all traces with strength
lower than x. We applied this filter with different strength
values.

• Constant strength reduction: This filter reduces the strength
of each trace candidate by a constant.

• Linear strength reduction: The strength value of traces with
100% percent strength are not reduced while traces with a
strength of 0% are reduced with a maximum value (e.g., 10).
The strength of traces with a strength value between 0% and
100% are reduced by a linear fraction of the maximum value.

Figure 2 depicts that all filters have the most effect on weaker
traces (very left side of graph), whereas strong traces (right side)
are hardly affected. We found the last filter, a scaled threshold, to
be most effective although the others were good also. This filter
did not use a constant threshold but one relative to the traces’
strengths – the weaker the trace link, the stronger the filter. The

aim of this filter was to leave strong traces strong but eliminate
weak ones.

While filters are cheap, they do have a side effect. The trace ana-
lyzer does not generate false negatives, i.e., if the trace analyzer
does not find a trace between two requirements, then there is
none. Yet, the filters eliminate traces rather randomly with the
assumption that most weak traces are false traces. Thus, a side
effect of using filters is that they also eliminate some true traces.
In other words, using a filter reduces the number of false positives
but it introduces false negatives.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

Trace Strength

N
um

be
r o

f T
ra

ce
s

Methods

Classes

Threshold: -5%

Threshold: <5% cut off

Threshold: Scale factor 5

Figure 2. Eliminating false positives at class level w/thresholds
Yet, this effect has advantages because many more false positives
are eliminated than false negatives are added (with small filters).
That is, the weakest 10% of the trace links contained only 1% of
the true traces (i.e., observe that 26% false positives may be re-
duced to 14% false positives by only adding 1% of false nega-
tives). Also, some applications that consume trace links may be
more amenable to false negatives than false positives. For exam-
ple, consistency checking is more confused by false positives than
false negatives. Thus, filtering may be used to alter the quality
effect in favour of the quality needs of the consumers of trace
links.

5. CONCLUSION AND FURTHER WORK
In this paper we have shown that cost-quality trade-offs play an
important role when introducing traceability techniques and tools.
Using three case studies we have demonstrated that it can be
worthwhile to reduce the level of detail during tracing to save
effort while the loss in quality might still be acceptable. Our em-
pirical study results indicate that trace analysis on method level is
roughly 10 times more expensive but produces almost no addi-
tional strong traces.
Further, we found that strong traces are very likely true traces
whereas weak traces are very likely false traces. That is, the
weakest 10% of all traces contain over 90% of false positives and
only few true trace links. Thresholds thus can quickly eliminate
false positives at the expense of also eliminating a few true trace
links.
The recently defined paradigm of value-based software engineer-
ing [2][3] brings a new view into the trace analysis research area.
Taking a value-based perspective can help save cost and by em-

phasizing investing effort on software artifacts with a perceived
higher stakeholder value. Some initial results have been reported
that consider value aspects in requirements traceability [7][10].
However, these approaches have not conducted a cost-quality
analysis to find out when and how intensive tracing in a specific
context is worthwhile.

REFERENCES
[1] Antoniol, G., Caprile, B., Potrich, A., Tonella, P., Design-

Code Traceability Recovery: Selecting the Basic Linkage
Properties, Science of Computer Programming, vol. 40,
no. 2-3, pp. 213-234, July 2001.

[2] Biffl, S., Aurum, A., Boehm, B.W., Erdogmus, H., and
Grünbacher, P. (eds.), Value-Based Software Engineering.
September 2005, Springer-Verlag.

[3] Boehm, B.W.: Value-Based Software Engineering. Software
Engineering Notes, 28(2), (March 2003)

[4] Egyed, A. and Grünbacher, P., Automating Requirements
Traceability: Beyond the Record & Replay Paradigm. Proc.
of the 17th IEEE International Conference on Automated
Software Engineering (ASE’02), Edinburgh, 2002.

[5] Egyed, A., A Scenario-Driven Approach to Trace Depend-
ency Analysis. IEEE Transactions on Software Engineering,
2003 29(2):116-132.

[6] Egyed, A. and Grünbacher, P., Identifying Requirements
Conflicts and Cooperation: How Quality Attributes and
Automated Traceability Can Help. IEEE Software, 2004.
21(6).

[7] Egyed, A., Tailoring Software Traceability to Value-based
Needs, In: Biffl, S., Aurum, A., Boehm, B.W., Erdogmus,
H., and Grünbacher, P. (eds.), Value-Based Software Engi-
neering, Sept. 2005, Springer Verlag

[8] Egyed, A. and Grünbacher, P., Supporting Software Under-
standing with Automated Traceability. in: International
Journal of Software Engineering and Knowledge Engineer-
ing (IJSEKE) (in press), 2005.

[9] Gotel, O. and Finkelstein, A., An Analysis of the Require-
ments Traceability Problem. Proc. 1st International Confer-
ence on Rqts. Eng., pp. 94-101, 1994.

[10] Heindl, M. and Biffl, S, A Process for Value-based Re-
quirements Tracing – A Case Study on the Impact on Cost
and Benefit, Proc. ESEC/FSE, Lisbon, Sept. 2005.

[11] Ramesh, B., Stubbs, L., and Edwards, M., "Lessons Learned
from Implementing Requirements Traceability." Crosstalk,
Journal of Defense Software Engineering 8, 4 (April 1995):
11-15. Online at: http://www.stsc.hill.af.mil/crosstalk-
/1995/apr/Lessons.asp.

[12] Richardson, J. and Green, J., Automating traceability for
generated software artifacts. In: Proc. 19th Int. IEEE Conf.
on Automated SE, Linz, Austria, pp. 24-33, 2004.

[13] Spanoudakis, G., Zisman, A., Perez-Minana, E., and Krause,
P. Rule-based generation of requirements traceability rela-
tions. J. Systems and Software, 72(2):105{127, 2004.

