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ABSTRACT 
Major software development standards mandate the establishment 
of trace links among software artifacts such as requirements, ar-
chitectural elements, or source code without explicitly stating the 
required level of detail of these links. However, the level of detail 
vastly affects the cost and quality of trace link generation and 
important applications of trace analysis such as conflict analysis, 
consistency checking, or change impact analysis. In this paper, we 
explore these cost-quality trade-offs with three case study systems 
from different contexts – the open-source ArgoUML modeling 
tool, an industrial route-planning system, and a movie player. We 
report the cost-quality trade-off of automated trace generation 
with the Trace Analyzer approach and discuss its expected impact 
onto several applications that consume its trace information. In 
the study we explore simple techniques to predict and manipulate 
the cost-benefit trade-off with threshold-based filtering. We found 
that (a) 80% of the benefit comes from only 20% of the cost and 
(b) weak trace links are predominantly false trace links and can be 
efficiently eliminated through thresholds. 

Categories and Subject Descriptors 
D.2.1 [Requirements/Specification] and D.2.8 [Metrics].  

General Terms 

Management, Documentation, Design, Economics, Experiment. 

Keywords 
Experience report, Value-Based Software Engineering, Auto-
mated Trace Analysis, Cost-Quality Trade-Off. 

1. INTRODUCTION 
Approaches for establishing traceability between software arti-
facts such as user needs, requirements, architectural elements, or 
code play an important role in both software engineering research 
and practice. The topic has been researched for more than a dec-

ade [9]. Furthermore, numerous major software engineering stan-
dards such as the CMMI or ISO 15504 consider software trace-
ability as a ‘best practice’ and mandate or strongly suggest the use 
of traceability techniques. In many branches of industry these 
standards are imposed on subcontractors. For example, several 
European car makers are demanding the fulfillment of a subset of 
ISO 15504 from all their subcontractors, who suddenly face the 
challenge of quickly and efficiently introducing traceability tech-
niques within their organization. 

Trace links support software engineers and quality assurance per-
sonnel during software development by helping them understand 
the many relationships among software artifacts. This is most 
worthwhile for large, complex, and long-living systems where 
there are many non-obvious relationships among artifacts. Trace 
analysis reveals relationships among a broader set of software 
artifacts such as user needs, requirements, architectural elements, 
or source code. For example, trace analysis can reveal which ele-
ments of a state chart or class diagram realize a requirement, or 
how the elements inside a state chart diagram relate to a class 
diagram, given that every state transition describes a distinct be-
havior and every class implements that behavior in form of a 
structure. While it might be easy to guess some of these trace 
dependencies, the semi-formal nature of many modeling lan-
guages (e.g., UML) and the informal nature of the requirements 
often make it hard to identify trace links completely. 

Software traceability deals with (a) trace link generation, i.e., the 
manual and/or automated identification of trace links; and 
(b) trace link consumption, i.e., the use of trace links for conflict 
analysis [6], consistency checking, and change impact analysis. 
The benefit of these applications largely depends on the quality of 
the trace links provided by trace generation. For the trace analysis 
to be useful, one also must understand for which particular engi-
neering tasks it is done and how incorrect trace links might affect 
the outcome. The ultimate goal is to tailor the trace analysis to 
produce the desired quality of trace links with the least amount of 
input effort. 

Higher-quality trace links (i.e., fewer false positives/negatives) 
allow the users getting their tasks done faster and better. For ex-
ample, higher-quality traces result in fewer false conflicts re-
ported during requirements engineering, or a more precise defini-
tion of the impact of a change request during system evolution. 
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While high-quality trace links are a desirable goal, they are typi-
cally not economical to produce as identifying and validating 
trace links can be a big burden in a typical project context [11]. 
There are tools available that provide the infrastructure for man-
aging trace links (e.g., case tools, requirements management 
tools). However, these tools do not free the engineers from identi-
fying links and from ensuring their validity over time. Despite its 
benefits traceability is therefore hardly adopted in industry, 
mainly due to these cost and complexity issues [10]. 

To overcome these problems, researchers have been developing 
different automated or semi-automated approaches for trace gen-
eration [5]: For example, Antoniol et al. [1] discuss a technique 
for automatically recovering traceability links between object-
oriented design models and code based on determining the simi-
larity of paired elements from design and code. Spanoudakis et 
al. [13] have contributed a rule-based approach for automatically 
generating and maintaining traceability relations. A forward engi-
neering approach is taken by Richardson and Green [12] in the 
area of program synthesis. Traceability relations are automatically 
derived between parts of a specification and parts of the synthe-
sized program. These and other approaches bring some relief, but 
they strongly rely on the quality of the input of trace link genera-
tion: mainly, the level of detail, e.g., classes or methods as points 
of reference, and the level of incorrect or missing trace links. 
In this paper we focus on trace generation, which deals with 
(1) identification of trace link candidates; and (2) validation of 
trace link candidates. The choice of techniques used for trace 
generation influences the amount and quality of traces, i.e., the 
number of correct trace links; incorrect trace links (“false posi-
tives”); and unreported relationships among artifacts (“false nega-
tives”). The validation step aims at reducing the number of incor-
rect trace candidates. The aim is to achieve a level of quality that 
is sufficient for the applications consuming trace links. Of course, 
the desired level of quality varies with the project context and 
applications. 

2. QUALITY CONSIDERATIONS IN 
TRACE ANALYSIS 

Trace Analyzer [4] supports generating trace link candidates 
based on a small “seed set” of trace links that can come from a 
human expert or from logs of test cases that link requirements 
(and other artifacts) to source code pieces. The engineer then 
chooses the desired level of detail for tracing source code: pack-
ages, classes, methods, or lines of code. The Trace Analyzer sim-
plifies the finding of trace link candidates among any kind of 
software artifacts (e.g., requirements, design model elements, and 
code). It requires as input some initial input how software artifacts 
relate to some common representation of the system, usually the 
source code. This relationship is typically explored through test-
ing, where engineers are expected to supply a set of test scenarios 
that match the software artifacts. During testing engineers log the 
lines of code, methods, or classes that are executed by these test 
scenarios. Since it must be known how test scenarios match soft-
ware artifacts, one can infer the software-artifact-to-code map-
ping.  

The existence of a trace link candidate between any two software 
artifacts is determined by their code overlaps. If two software 
artifacts do not share any code part (e.g., lines of code, methods, 
or classes) during execution (i.e., they execute in distinct parts of 

the system) then no trace link is assumed among them. Note that a 
trace link is not a data/control dependency, but simply describes 
some correlation between two software artifacts. If two artifacts 
do share code, then there may be a trace link, if the shared code is 
application-specific. 

Trace link candidates are thus computed by the Trace Analyzer 
based on the degrees of code overlap among software artifacts. 
Testing is a validation form that can not guarantee completeness 
(i.e., test cases may be missing). This naturally affects trace gen-
eration and the Trace Analyzer thus provides an input language 
that lets the engineer express known uncertainties [5]. 

The Trace Analyzer leverages manual trace generation by adding 
new trace candidates based on initially available trace candidates, 
e.g., from test suites for a requirement that relate it to the “foot-
print” of executed code elements. In this paper we focus on the 
aspect of incorrect trace candidates (“false positives”) and missing 
trace candidates (“false negatives”) as these can incur substan-
tially higher cost for trace candidate generation and validation. 
While the trace analyzer tool greatly simplifies trace candidate 
generation it is not fool proof and the input affects the validity 
and value of the output. This profoundly influences the utility of 
applications that consume trace links such as consistency check-
ing, change impact analysis, or trade-off analysis during later 
development iterations or software maintenance. Moreover, a 
dilemma is that the quality of trace analysis is not just a factor of 
the correctness of the input. Even correct input may yield wrong 
traces given that we have choices in the level of detail of how 
trace analysis is done during development.  

Class A

method 1
method 2

requirement 1 uses method 1 of A

requirement 2 uses method 2 of A

Granularity: Method Granularity: Classes

requirement 1uses class A:

requirement 2 uses class A

no overlap overlap  
Figure 1. Code overlap example on method and class level 

Take, for example, in Figure 1 two requirements that are realized 
by the same class but by different methods. If we analyze traces 
on the method-level, then the two requirements do not overlap 
because they are executed in distinct methods. Yet, an analysis on 
class level will report an overlap because both requirements relate 
to the same class. The statement that both requirements execute 
inside the same class is correct, yet, may cause incorrect traces 
(i.e., false positives).  

Standards such as the CMMI or ISO 15504 request the use of 
traceability techniques and also specify useful types of trace links. 
However, there are no explicit statements about the required level 
of detail of these links. A standard might be satisfied if software 
artifacts are mapped to classes instead of methods even though 
this introduces a significant number of flaws during trace analy-
sis. Choosing the appropriate level of detail is a difficult problem: 
Method-level analysis allows more detailed results than class-
level analysis; lines of code allow an even finer analysis. The 
execution of a particular if-statement inside a method may well 
point to the implications of a particular requirement. From the 
sole perspective of trace quality, the analysis on the level of lines 
of code is thus even more preferable. 



 

While traceability on finer levels of detail promises a finer picture 
of the relationships among software artifacts, this is achieved at 
higher cost. A lower level of detail typically decreases trace qual-
ity because it results in a higher number of false positives (it is 
hard, however, to accurately estimate to what extent). It is thus 
vital for trace analysis to understand the cost-quality implication 
of different levels of detail. How much quality do we sacrifice by 
saving one-order of magnitude effort in input generation (which 
can be translated to engineering hours)? Is the sacrifice of quality 
acceptable?  

3. COST-QUALITY TRADE-OFF 
ANALYSIS IN THREE CASE STUDIES 

In order to explore the cost-quality trade-offs just sketched, we 
conducted three case studies to investigate the effects of different 
levels of detail (i.e., method level, class level, and package level) 
for trace link generation on trace analyzer output quality (i.e., the 
level of false positives). The software systems we have chosen for 
our study are three differently-sized applications: the open-source 
ArgoUML modeling tool, a Siemens route-planning application, 
and a movie player. ArgoUML is an open-source software design 
tool supporting the Unified Modeling Language (UML). The 
entire source code and documentation for ArgoUML are available 
from http://www.argouml.org. The Siemens route-planning sys-
tem, described in more detail in [10], supports efficient public 
transportation in rural areas with modern information technolo-
gies. The “Video on demand” package is essentially a movie 
player that can search for movies, select, and play them (more 
detailed information is available in [4]). 

Table 1. Case study systems and main context parameters 

System Development context 

ArgoUML UML modelling tool;  
open-source development  

Siemens Route 
Planning 

Route-planning application for public 
transportation; industrial team work 

Video on demand  Movie player application; single devel-
oper open-source development 

 
Trade-off analysis of the level of detail vs. the level of quality. For 
each case study system we analyzed the impact of generating 
trace link candidates on the number of false positives. As baseline 
we took the level of false positives from trace links on the method 
level, the finest level of trace detail in our study. This analysis 
compares how a reduction of the level of detail (e.g., from method 
to class or from class to package) and the associated effort results 
in a higher level of false positives. For example, the largest of the 
three systems we evaluated, the ArgoUML system, has 49 pack-
ages, 645 classes, and 5,952 methods. Naturally, it is easier to 
map software artifacts to 645 Java classes than to 5,952 Java 
methods, and we can thus save at least one order of magnitude in 
effort by using classes instead of methods to determine the soft-
ware-artifact-to-code mapping. We found that we can also save 
another order of magnitude, if we use packages instead of classes. 
Strength analysis of trace link candidates. For the validation step 
after generating trace link candidates it is helpful to identify the 
candidates that are most likely false positives. Thus, we measured 
the “strength” of each trace link candidate. We expected to find a 

positive correlation between the number of false positives and the 
strength of trace link candidates.  
The “strength” of a trace link candidate is defined as the ratio of 
the number of code elements (e.g., methods) that implement a 
requirement and the number of code elements that two require-
ments share as part of their implementation. For example, if re-
quirement X is implemented in 10 methods, requirement Y is im-
plemented in 5 methods, and 2 methods implement a part of X as 
well as a part of Y. Then, the trace strength for X is 2/10 = 20% 
and for Y 2/5 = 40%. Stronger trace links are less likely to be false 
positives. Our analysis once more underlines the diminishing 
return in investment with more detailed levels of input. Trace 
analysis on method level is in our study contexts around 10 times 
more expensive but produces almost no additional strong traces. 
These results are confirmed with the route-planning system data 
and the movie player. We found that during the validation of trace 
link candidates it is most worthwhile to concentrate on low-
strength trace candidates. These trace candidates are harder to 
decide automatically and need human judgment. High-strength 
traces and traces with zero strength are very likely to be correct 
and we found in our studies little extra value in validating them 
manually. 
 

4. VALIDATION SUPPORT: 
THRESHOLDS TO FILTER ERROR-
PRONE TRACE CANDIDATES 

The data analysis reported in Section 3 showed that tracing at 
class level can save an order of magnitude of input effort while 
introducing only 15-30% more false positives compared to tracing 
at method level. So, regarding our case studies, one could argue 
that the tracing quality at the class level is relatively close to trac-
ing at method level. Yet, Section 3 showed that most of the qual-
ity problems when tracing at class level came from low-strength 
traces. This opens up an opportunity to investigate the option of 
automated filtering support (strength thresholds) for the trace 
candidate validation step to eliminate error-prone low-strength 
traces – thus improving the overall quality of the trace analysis at 
very little extra cost. 

We experimented with three different kinds of filters, namely: 

• Threshold: This filter eliminates all traces with strength 
lower than x. We applied this filter with different strength 
values. 

• Constant strength reduction: This filter reduces the strength 
of each trace candidate by a constant.  

• Linear strength reduction: The strength value of traces with 
100% percent strength are not reduced while traces with a 
strength of 0% are reduced with a maximum value (e.g., 10). 
The strength of traces with a strength value between 0% and 
100% are reduced by a linear fraction of the maximum value.  

Figure 2 depicts that all filters have the most effect on weaker 
traces (very left side of graph), whereas strong traces (right side) 
are hardly affected. We found the last filter, a scaled threshold, to 
be most effective although the others were good also. This filter 
did not use a constant threshold but one relative to the traces’ 
strengths – the weaker the trace link, the stronger the filter. The 



 

aim of this filter was to leave strong traces strong but eliminate 
weak ones. 

While filters are cheap, they do have a side effect. The trace ana-
lyzer does not generate false negatives, i.e., if the trace analyzer 
does not find a trace between two requirements, then there is 
none. Yet, the filters eliminate traces rather randomly with the 
assumption that most weak traces are false traces. Thus, a side 
effect of using filters is that they also eliminate some true traces. 
In other words, using a filter reduces the number of false positives 
but it introduces false negatives.  
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Figure 2. Eliminating false positives at class level w/thresholds 
Yet, this effect has advantages because many more false positives 
are eliminated than false negatives are added (with small filters). 
That is, the weakest 10% of the trace links contained only 1% of 
the true traces (i.e., observe that 26% false positives may be re-
duced to 14% false positives by only adding 1% of false nega-
tives). Also, some applications that consume trace links may be 
more amenable to false negatives than false positives. For exam-
ple, consistency checking is more confused by false positives than 
false negatives. Thus, filtering may be used to alter the quality 
effect in favour of the quality needs of the consumers of trace 
links.  

5. CONCLUSION AND FURTHER WORK 
In this paper we have shown that cost-quality trade-offs play an 
important role when introducing traceability techniques and tools. 
Using three case studies we have demonstrated that it can be 
worthwhile to reduce the level of detail during tracing to save 
effort while the loss in quality might still be acceptable. Our em-
pirical study results indicate that trace analysis on method level is 
roughly 10 times more expensive but produces almost no addi-
tional strong traces. 
Further, we found that strong traces are very likely true traces 
whereas weak traces are very likely false traces. That is, the 
weakest 10% of all traces contain over 90% of false positives and 
only few true trace links. Thresholds thus can quickly eliminate 
false positives at the expense of also eliminating a few true trace 
links. 
The recently defined paradigm of value-based software engineer-
ing [2][3] brings a new view into the trace analysis research area. 
Taking a value-based perspective can help save cost and by em-

phasizing investing effort on software artifacts with a perceived 
higher stakeholder value. Some initial results have been reported 
that consider value aspects in requirements traceability [7][10]. 
However, these approaches have not conducted a cost-quality 
analysis to find out when and how intensive tracing in a specific 
context is worthwhile. 
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